首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45334篇
  免费   4611篇
  国内免费   2732篇
工业技术   52677篇
  2024年   95篇
  2023年   570篇
  2022年   936篇
  2021年   1360篇
  2020年   1374篇
  2019年   1212篇
  2018年   1191篇
  2017年   1575篇
  2016年   1816篇
  2015年   2048篇
  2014年   2895篇
  2013年   2817篇
  2012年   3203篇
  2011年   3955篇
  2010年   2814篇
  2009年   3027篇
  2008年   2823篇
  2007年   3345篇
  2006年   2865篇
  2005年   2433篇
  2004年   2029篇
  2003年   1774篇
  2002年   1354篇
  2001年   1123篇
  2000年   937篇
  1999年   661篇
  1998年   512篇
  1997年   380篇
  1996年   289篇
  1995年   252篇
  1994年   213篇
  1993年   169篇
  1992年   150篇
  1991年   113篇
  1990年   81篇
  1989年   76篇
  1988年   36篇
  1987年   21篇
  1986年   27篇
  1985年   22篇
  1984年   18篇
  1983年   4篇
  1982年   10篇
  1981年   6篇
  1980年   10篇
  1979年   7篇
  1977年   8篇
  1975年   5篇
  1964年   5篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
1.
2.
3.
4.
This study investigates the behavior of fruit and vegetable samples during drying. The experimental data are fitted to several different thin-layer drying models. Regression analysis is used to determine model parameters, while statistical indicators serve to evaluate the goodness of fit. The power function model gives the best fit for all examined samples. Based on this model, different drying and heat storage technologies can be combined to ensure that the required residual moisture content of an agricultural product is reached. It is demonstrated on the case of a specific Togolese processing plant that under favorable conditions, fossil fuel consumption can be decreased by 33 %.  相似文献   
5.
An electrolyte Equation of State is presented by combining the Cubic Plus Association Equation of State,Mean Spherical Approximation and the Born equation.This new model uses experimental relative static permittivity,intend to predict well the activity coefficients of individual ions (ACI) and liquid densities of aqueous solutions.This new model is applied to model water + NaCl binary system and water + gas +NaCl ternary systems.The cation/anion-water interaction parameters of are obtained by fitting the exper-imental data of ACI,mean ionic activity coefficients (MIAC) and liquid densities of water + NaCl binary system.The cation/anion-gas interaction parameters are obtained by fitting the experimental data of gas solubilities in aqueous NaCl solutions.The modeling results show that this new model can correlate well with the phase equilibrium and volumetric properties.Without gas,predictions for ACI,MIAC,and liquid densities present relative average deviations of 1.3%,3.6% and 1.4% compared to experimental ref-erence values.For most gas-containing systems,predictions for gas solubilities present relative average deviations lower than 7.0%.Further,the contributions of ACI,and salting effects of NaCl on gases are ana-lyzed and discussed.  相似文献   
6.
Chemical engineering systems often involve a functional porous medium, such as in catalyzed reactive flows, fluid purifiers, and chromatographic separations. Ideally, the flow rates throughout the porous medium are uniform, and all portions of the medium contribute efficiently to its function. The permeability is a property of a porous medium that depends on pore geometry and relates flow rate to pressure drop. Additive manufacturing techniques raise the possibilities that permeability can be arbitrarily specified in three dimensions, and that a broader range of permeabilities can be achieved than by traditional manufacturing methods. Using numerical optimization methods, we show that designs with spatially varying permeability can achieve greater flow uniformity than designs with uniform permeability. We consider geometries involving hemispherical regions that distribute flow, as in many glass chromatography columns. By several measures, significant improvements in flow uniformity can be obtained by modifying permeability only near the inlet and outlet.  相似文献   
7.
Perfluorosulfonic acid ionomer membranes have been widely used as proton conducting membranes in various electrochemical processes such as polymer electrolyte fuel cells and water electrolysis. While their thermal stability has been studied by thermogravimetry and analysis of low molecular weight products, their decomposition mechanism is little understood. In this study a newly developed methodology of thermal desorption and pyrolysis in combination with direct analysis in real time mass spectrometry is applied for Nafion membrane. An ambient ionization source and a high-resolution time-of-flight mass spectrometer enabled unambiguous assignment of gaseous products. Thermal decomposition is initiated by side chain detachment above 350°C, which leaves carbonyls on the main chain at the locations of the side chains. Perfluoroalkanes are released above 400°C by main chain scission and their further decomposition products dominate above 500 °C. DFT calculation of reaction energies and barrier heights of model compounds support proposed decomposition reactions.  相似文献   
8.
With liquefied natural gas becoming increasingly prevalent as a flexible source of energy, the design and optimization of industrial refrigeration cycles becomes even more important. In this article, we propose an integrated surrogate modeling and optimization framework to model and optimize the complex CryoMan Cascade refrigeration cycle. Dimensionality reduction techniques are used to reduce the large number of process decision variables which are subsequently supplied to an array of Gaussian processes, modeling both the process objective as well as feasibility constraints. Through iterative resampling of the rigorous model, this data-driven surrogate is continually refined and subsequently optimized. This approach was not only able to improve on the results of directly optimizing the process flow sheet but also located the set of optimal operating conditions in only 2 h as opposed to the original 3 weeks, facilitating its use in the operational optimization and enhanced process design of large-scale industrial chemical systems.  相似文献   
9.
《Journal of dairy science》2022,105(4):3176-3191
Milk concentrates are used in the manufacturing of dairy products such as yogurt and cheese or are processed into milk powder. Processes for the nonthermal separation of water and valuable milk ingredients are becoming increasingly widespread at farm level. The technical barriers to using farm-manufactured milk concentrate in dairies are minimal, hence the suspicion that the practice of on-farm raw milk concentration is still fairly uncommon for economic reasons. This study, therefore, set out to investigate farmers' potential willingness to adopt a raw milk concentration plant. The empirical analysis was based on discrete choice experiments with 75 German dairy farmers to identify preferences and the possible adoption of on-farm raw milk concentration. The results showed that, in particular, farmers who deemed the current milk price to be insufficient viewed on-farm concentration using membrane technology as an option for diversifying their milk sales. We found no indication that adoption would be impeded by a lack of trustworthy information on milk processing technologies or capital.  相似文献   
10.
Carbonic anhydrases (CAs) have been identified as ideal catalysts for CO2 sequestration. Here, we report the sequence and structural analyses as well as the molecular dynamics (MD) simulations of four γ-CAs from thermophilic bacteria. Three of these, Persephonella marina, Persephonella hydrogeniphila, and Thermosulfidibacter takaii originate from hydrothermal vents and one, Thermus thermophilus HB8, from hot springs. Protein sequences were retrieved and aligned with previously characterized γ-CAs, revealing differences in the catalytic pocket residues. Further analysis of the structures following homology modeling revealed a hydrophobic patch in the catalytic pocket, presumed important for CO2 binding. Monitoring of proton shuttling residue His69 (P. marina γ-CA numbering) during MD simulations of P. hydrogeniphila and P. marina’s γ-CAs (γ-PhCA and γ-PmCA), showed a different behavior to that observed in the γ-CA of Escherichia coli, which periodically coordinates Zn2+. This work also involved the search for hotspot residues that contribute to interface stability. Some of these residues were further identified as key in protein communication via betweenness centrality metric of dynamic residue network analysis. T. takaii’s γ-CA showed marginally lower thermostability compared to the other three γ-CA proteins with an increase in conformations visited at high temperatures being observed. Hydrogen bond analysis revealed important interactions, some unique and others common in all γ-CAs, which contribute to interface formation and thermostability. The seemingly thermostable γ-CA from T. thermophilus strangely showed increased unsynchronized residue motions at 423 K. γ-PhCA and γ-PmCA were, however, preliminarily considered suitable as prospective thermostable CO2 sequestration agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号